
J. Fluid Mech. (2009), vol. 618, pp. 361–379. c© 2008 Cambridge University Press

doi:10.1017/S0022112008004527 Printed in the United Kingdom

361

Capillary entry pressure and the leakage of
gravity currents through a sloping layered

permeable rock

ANDREW W. WOODS† AND ADRIAN FARCAS
BP Institute, University of Cambridge, Cambridge CB3 0EZ, UK

(Received 16 March 2008 and in revised form 9 October 2008)

We examine the motion of a buoyant fluid injected into a water-saturated porous
rock as it spreads along a thin inclined low-permeability barrier. We account for
leakage of the fluid across the barrier once the current is sufficiently deep so that
the pressure exceeds the capillary threshold. We show that at some distance from
the source, the pressure decreases below this threshold, and all the remaining flux
spreads laterally along the barrier. We examine the controls on the partitioning of the
flow between the draining flux and the laterally spreading flux and also the controls
on the lateral extent of the draining region for the case of an instantaneous release
and a maintained release of fluid. We consider the implications of our work for the
dispersal of CO2 plumes which may be sequestered in deep saline aquifers.

1. Introduction
The injection of CO2 into deep saline aquifers or depleted oil and gas fields has

received considerable interest in the context of global warming and the related
challenge of reducing anthropogenic carbon emissions into the atmosphere (Kumar
et al. 2005; Nordbotten, Celia & Bachu 2005). In deep saline aquifers, CO2 is
supercritical and has a density of the order 20 %–40 % smaller than that of water,
depending on the temperature and pressure. As a result, there is concern that the CO2

will migrate through the subsurface and back to human environment, perhaps over
time scales of tens to hundreds of years. In order to assess this risk, models are being
developed to describe the migration of CO2 plumes through the subsurface (Hesse
et al. 2006, 2007; Mitchell & Woods 2006; Vella & Huppert 2006), and data are being
collected from various field trials using seismic imaging to interpret the dispersal
patterns in the field (Bickle et al. 2007). A significant challenge associated with the
prediction of such CO2 transport is the complexity of the subsurface strata through
which the CO2 migrates. This can lead to multiple and tortuous flow paths from the
injection point to the surface, with the CO2 being dispersed laterally over substantial
distances but also reaching the surface through different flow paths over a range of
different time scales. Data from the Sleipner field in Norway (Bickle et al. 2007) has
shown that the gas spreads out in a pine tree–type pattern, spreading laterally beneath
low-permeability layers while gradually migrating upwards as it leaks through these
layers or fractures which cut across the layers.

Some of the models which have been developed to describe the migration of plumes
of CO2 in the subsurface have assessed the buoyancy-driven dispersal through both
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relatively thin layers (Mitchell & Woods 2006; Nordbotten & Celia 2006), in which
the CO2 plume fills the whole depth of the layer, and deeper layers of permeable
rock, in which the CO2 plume spreads as a relatively thin gravity current (Huppert &
Woods 1995; Woods 2002; Hesse et al. 2006, 2007). In both cases, the flow is assumed
to migrate along an upper impermeable boundary as a thin, laterally extensive flow,
and the analysis of the flow dynamics has been based on the assumption of a long,
thin current of slowly varying thickness, following the classical work of Bear (1970),
Barenblatt, Entov & Ryzhik (1990) and Barenblatt (1996). However, in many cases
the overlying layer may not be impermeable but may be of much lower permeability
than the main flowing layer. As the CO2 migrates along the interface between the
layers, it may then slowly leak through the low-permeability layer. The permeability
of this layer may be associated with the rock itself, or if the layer is pervasively
fractured, then on a larger field scale, it may be an effective permeability associated
with the fractures (Pritchard 2007). Pritchard, Woods & Hogg (2001) explored the
dynamics of a gravity-driven flow migrating along a thin, horizontal low-permeability
barrier, accounting for the draining of the flow into the boundary as it spreads along
the boundary. Their analysis assumed that the injected fluid was fully miscible with
the original fluid in the porous layer and did not account for any inclination of layers
towards the horizontal.

Here, we explore the dynamics of the gravity-driven flow of a buoyant fluid as
it migrates through a permeable rock, saturated with a second, immiscible fluid,
along a thin, inclined low-permeability barrier. We assume that there is a capillary
entry pressure which limits the migration of the injected fluid into the seal rock; this
arises owing to the effects of the interfacial tension between the injected liquid and
the original fluid in the rock which restricts the injected fluid from passing through
pore throats into the neighbouring pores (Bear 1970; Dake 1978; Bear & Ryzhik
1998). The magnitude of this capillary entry pressure depends on the interfacial
tension between the two fluid phases but has the typical magnitude of 25–50 mN for
the CO2–water system, at temperatures of 0◦–100 ◦C and pressures of the order of
1000 atm (Holloway 2001), but it also depends critically on the pore size. The capillary
entry pressure requires the current to have a minimum overpressure before it can
drain upwards through the ‘seal’ layer. Typically, the cross-flow pressure gradient is
dominantly hydrostatic, and so this implies that there is a minimum depth of the
buoyant layer before it can enter the seal; we refer to this as the capillary depth
(cf. Bear 1970). If the depth of the current is greater than this capillary depth, then
the injected fluid flows through the thin seal rock and may form a continuous layer
across the seal rock. This leakage flow is then driven by the overpressure of the fluid
beneath the seal layer (cf. Pritchard et al. 2001). However, if, as it is flowing through
the seal, the pressure of the injected fluid beneath the seal falls sufficiently, then the
interfacial tension may inhibit further flow through the seal layer, and the draining
will cease. There may be some hysteresis between the critical pressure required to
drive the fluid into the seal layer and the pressure at which the fluid is no longer able
to enter the seal layer (cf. Bear 1970; Dake 1978); however, in the present work, for
simplicity, we take these to be the same. As a result of the control on the draining
exerted by the capillary entry pressure, there is now a nonlinear boundary condition
on the dynamics of the spreading current, and we explore the impact of this on the
fate of the current. As two limiting cases, in this paper we examine the evolution of
the flow arising from both a maintained source of buoyant fluid and an instantaneous
finite release of buoyant fluid (cf. Huppert & Woods 1995). Such calculations provide
valuable insight into the dispersal process, but they also provide reference solutions
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Figure 1. Schematic diagram of a generic inclined layer formation and a horizontal injection
well, located at the base of the well bore shown in the figure. The horizontal well is directed
into the page in the flow layer normal to the slope, so as to produce a two-dimensional current
of buoyant fluid which runs upslope as indicated.

for more detailed numerical simulations. We discuss the implications of our model
for the dispersal of a CO2 plume through the subsurface.

2. The buoyant flow along an inclined boundary
If a flux of buoyant fluid issues from a horizontal well beneath an inclined layer of

lower permeability, then this layer will act as a vertical barrier to the flow (figure 1).
On reaching the boundary, the buoyant fluid will spread along the boundary to form
a laterally extensive thin current (cf. Pritchard et al. 2001). In this long, thin current,
we expect the cross-layer velocity field to be much smaller than the along-layer
velocity (cf. Bear 1970; Huppert & Woods 1995), and so the pressure gradient in
the cross-layer direction will be approximately given by the hydrostatic pressure in
the cross-layer direction, while the along-layer pressure gradient, associated with the
along-slope motion, will be balanced by two buoyancy forces. The first one is the
along-slope buoyancy force associated with the inclined boundary, and the second one
is the buoyancy force associated with the cross-layer component of gravity combined
with any change in the depth of the current along the slope (Huppert & Woods
1995). If we denote the thickness of the plume running along the underside of the
low-permeability layer to be h(x, t) where h � H , the thickness of the aquifer, then
the cross-layer hydrostatic pressure may be expressed as

p(x, y, t) = po − ρwg cos θ(x tan θ − h) − ρgg cos θ(h − y), (2.1)

where θ is the angle of the slope to the horizontal; 0 <y <H is the downward
distance normal to the boundary; x is the distance along the boundary in the upslope
direction; po is a reference pressure; and ρg and ρw denote the densities of the injected
liquid and the host water (figure 1). The aquifer is assumed to be laterally extensive
in the upslope direction, x > 0, and for simplicity we therefore examine the motion of
the current in the half-plane x > 0.

The along-layer motion of the injected fluid in which the buoyancy force drives the
flow is given by Darcy’s law:

u = − k

μ

(
∂p

∂x
+ ρgg sin θ

)
, (2.2)

where k denotes the effective permeability for the motion of the injected fluid as it
moves through the main layer of rock below the low-permeability seal. This represents
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a useful simplification of the relative permeability in the case of modelling the motion
of CO2 through a water-saturated rock as shown by Nordbotten & Celia (2006) and
Hesse et al. (2007). Also, μ is the viscosity of the injected fluid, and g the acceleration
due to gravity. Local mass conservation requires that the depth of the current varies
owing to any gradient of the fluid flux along the boundary together with any draining
of fluid through the boundary (cf. Pritchard et al. 2001). The cross-layer draining
flow is assumed to be driven by the hydrostatic head in the cross-layer direction,
�ρg cos θ(h + b), where b is the thickness of the seal layer. In our simplified picture,
the injected liquid only enters the seal layer if the cross-layer hydrostatic pressure in
the current exceeds the capillary entry pressure into the seal layer, pc = �ρg cos θhc,
say. Therefore, draining only occurs if h>hc, where �ρ = ρw − ρg . In the limit of a
thin seal layer, hc � b; then the term (h+b) in the above expression for the cross-layer
draining flow can be approximated by h, so that the hydrostatic head driving the
cross-layer draining flow can be approximated by the expression �ρg cos θh. In this
limit, we also assume that the resistance to flow in the seal exceeds that in the current,
ku/b � k/hc, where ku is the effective permeability of the injected liquid as it moves
through the overlying low-permeability ‘seal’ rock and b is the thickness of the seal
rock. The governing equation for the depth of the current then takes the approximate
form (cf. Pritchard et al. 2001)

φ
∂h

∂t
=

k�ρg cos θ

μ

∂

∂x

[
h

∂h

∂x
− h tan θ

]
− ku�ρg cos θ

μb
h for h � hc (2.3)

and

φ
∂h

∂t
=

k�ρg cos θ

μ

∂

∂x

[
h

∂h

∂x
− h tan θ

]
for h < hc. (2.4)

In this model we have assumed that the draining flow of the injected liquid is upward
and that there is no downflow of the original formation fluid through the seal layer in
response to the upflow. This approximation is motivated by the observation that the
speed of the upflow through the seal layer kug�ρhc/μb is greater than the buoyancy-
driven exchange flow through the seal layer kug�ρ/mu by the factor hc/b � 1. Thus
any potential Rayleigh–Taylor-type overturn within the seal layer is suppressed by
the buoyancy force driving the upflow through the seal, as shown in the analogue
Hele-Shaw experiments of Pritchard et al. (2001). We have also assumed that the flow
front advancing along the inclined slope is planar; physically, this is consistent with
the decreasing pressure gradient towards the nose of the flow which results from the
increased curvature of the interface at the nose. Experiments reported by Mitchell
& Woods (2006), numerical modelling of Nordbotten & Celia (2006) and stability
arguments (cf. Mathunjwa & Hogg 2005) are also consistent with the assumption of
a planar, non-fingered interface.

In analysing the motion of these draining currents, we consider two limiting
problems corresponding to (i) a constant injection rate Q per unit distance across
the slope and (ii) an instantaneous release of volume A per unit distance across the
slope. For the process of CO2 sequestration, these limits correspond to the injection
phase from a line well and the subsequent gravitational spreading upslope following
the injection phase.

3. Constant injection rate
First we focus on the problem of a maintained supply of fluid Q moving upslope

from a fixed source; this is a simplification of the more general problem in which
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the injected fluid may spread up or down the dip, and we comment further on this
in the discussion. The present modelling could in principle represent injection at the
apex of a V-shaped impermeable layer or injection upslope of a sealed fault plane
intersecting the impermeable layer.

The depth of the current can be scaled by the depth L of a steady current of flux
Q migrating along the boundary,

L =
μQ

�ρg sin θk
, (3.1)

so that ĥ = h/L, where the carat denotes a dimensionless variable. We use the draining
length of the current as the along-slope scale for the current, noting it is only relevant
for that part of the current in which there is draining. This draining length is controlled
by the distance the current travels along the slope over the time required to drain
into the low-permeability seal. The ratio R of the speed of draining through the seal
to the along-slope speed is

R =

(
kuL cos θ

b

) (
1

k sin θ

)
, (3.2)

where the current thickness, which scales as L, provides the head to drive the fluid
through the low-permeability seal of thickness b. Therefore, the draining length is
given by

X =
k

ku

b tan θ, (3.3)

and we set x̂ = x/X. The time scale for the draining of the current of thickness L is
given as

τ =
φbμ

ku�ρg cos θ
, (3.4)

so that t̂ = t/τ . The dimensionless equations then take the form

∂ĥ

∂t̂
= Γ

∂

∂x̂

(
ĥ

∂ĥ

∂x̂

)
− ∂ĥ

∂x̂
− ĥ for ĥ > ĥc (3.5)

and

∂ĥ

∂t̂
= Γ

∂

∂x̂

(
ĥ

∂ĥ

∂x̂

)
− ∂ĥ

∂x̂
for ĥ < ĥc, (3.6)

and the key parameter which emerges from this scaling analysis is

Γ =
R

tan θ
=

kuμQ

k2b�ρg sin θ tan2 θ
, (3.7)

where Γ relates the ratio of the speed of draining to the along-slope speed, R, with
the gradient of the slope to the horizontal tan θ . Alternatively, Γ may be interpreted
as the ratio of the depth scale of the current advancing along the slope to the
length scale required for draining, divided by the gradient of the slope. In solving the
dimensionless equations (3.5) and (3.6), we set the flux at x̂ = 0 to be unity,

Γ ĥ
∂ĥ

∂x̂
− ĥ = −1, (3.8)

and the leading edge of the draining zone, x̂ = x̂c, say, is given by the point at which
ĥ = ĥc. For x̂ > x̂c, the depth of the current evolves according to (3.5), and at x̂ = x̂c
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Figure 2. Comparison of numerical (− − −) and analytical ( ) steady state solutions of
the current depth as functions of position from the source for Γ = 0.1, 1.0, 10.0.

we require that the current depth and flux be continuous (cf. Pritchard 2007), which
requires

[
ĥ
]+

− = 0 and

[
ĥ

∂ĥ

∂x̂
− ĥ

]+

−

= 0. (3.9)

Finally, at the leading edge of the current, ĥ = 0. Note that after a finite volume of
fluid has been injected, then owing to the nonlinearity, the leading edge of the current
extends a finite distance from the source.

3.1. Steady-state solutions

We first examine the case ĥc = 0 and then extend the analysis to the case ĥc �= 0. With
ĥc =0, in the limit Γ � 1 (3.5) has an approximate steady-state solution in which the
depth falls to zero exponentially with distance according to

ĥ ≈ exp(−x̂). (3.10)

For larger values of Γ , the structure of the steady solution near the source is nonlinear
and requires numerical solution. In figure 2, we compare the steady-state solutions for
a range of values of Γ . The figure illustrates how the nonlinear solution converges to
the analytical value for small Γ , but for larger Γ , the dimensionless current depth near
the source is overpredicted by the linearized model. For small Γ this effect may be
seen from an asymptotic expansion of the form ĥ(x̂) ∼ ho(x̂) + Γ h1(x̂) + · · · for which
it may be shown from (3.5) that h1(x̂) = − 2 exp(−2x̂). Indeed, in figure 3(a), we show
how the dimensionless current depth at the source decreases with Γ . As Γ increases,
one may interpret it as an increase in the depth of the current as it advances upslope
or a decrease in the draining length or a decrease in the gradient of the slope (cf. (3.7));
each of these three effects tends to increase the cross-slope spreading which, relative
to the scalings for the depth and length, leads to a thinner and longer dimensionless
current. Indeed, figure 2 also illustrates how the lateral extent of the current increases
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Figure 3. Variation with the draining parameter Γ of (a) dimensionless depth at the source

ĥmax and (b) the drainage distance LD defined as the point at which the dimensionless current
depth has the value 10−6.

with Γ , and in figure 3(b) we illustrate how the dimensionless distance LD at which
the dimensionless current depth has fallen to the value 10−6 increases with Γ .

3.2. Time-dependent motion

The equations have been solved numerically using a predictor–corrector algorithm
(Ames 1977), and the accuracy has been checked to be within 1 % by repeating
calculations with one half the time and/or space steps. Figure 4(a) illustrates the time
evolution of the current as it runs along a low-permeability barrier in the case Γ = 1.
The transient flow adjusts to the steady draining solution shown in figure 2 over a time
of order unity. Indeed, further numerical calculations show that the dimensionless
time t̂ required for the flow to adjust so that the draining flux equals 95 % of the
supply flux ranges from 3.05 to 3.12 for Γ < 103 (figure 4b). This illustrates that for
small Γ the dominant dynamics relate to the balance between the cross-layer draining
and the along-layer buoyancy force; since the scaled time is based on this balance,
the value of t̂conv becomes independent of Γ for small Γ . With larger values of Γ , the
nonlinear diffusion term causes the current to spread much further along the slope,
delaying the draining until the current has reached these more distant points, and
hence the adjustment time to equilibrium increases.
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Figure 4. (a) Illustration of the time evolution of the current depth as it spreads along a
permeable boundary, in the case in which Γ =1. (b) Variation of the time required for the
transient flow to adjust to the equilibrium solution, as a function of the draining parameter
Γ . Here the adjustment time t̂conv is defined as the time at which 95 % of the flux has drained
through the boundary.

3.3. The influence of capillary pressure

The calculations above correspond to the case in which the injected liquid phase
is assumed to be free to drain into the low-permeability seal rock. However, the
capillary entry pressure may suppress this draining once ĥ < ĥc, and instead the flow
will then continue migrating through the more permeable layer below the seal. Using
the present dimensionless variables, if ĥc > 1, then there is no draining, and the
dimensionless current runs upslope with unit depth and speed. However, if ĥc < 1,
then some of the flow will drain through the boundary, ultimately leading to a current
of shallower depth ĥ = ĥc; we now explore how this occurs.

We expect that near the source, the current may be deeper than the critical depth for
draining, ĥ > ĥc, and so there will be a zone in which the current progressively thins
and drains while also spreading laterally under gravity (cf. figure 5a). However, further
from the source, when the current has thinned sufficiently, the draining will cease,
and the current will then run along the boundary. This may be seen in figure 5(a), in
which the solid lines illustrate the gradual evolution of the depth of the current along
the slope with time (i–vi). As the current moves forward, the region at the nose which
is shallower than the capillary depth, ĥ < ĥc, advances ahead of the deeper draining
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Figure 5. (a) Comparison of a current with and without a capillary pressure threshold (solid
and dotted lines) and, for reference, the final steady shape of the draining current with no
capillary pressure. Each line corresponds to successive times – (i) t̂ = 2, (ii) t̂ = 5, (iii) t̂ = 8,

(iv) t̂ = 12, (v) t̂ = 18, (vi) t̂ = 27 – in the evolution of the current, with ĥc = 0.2 and Γ = 0.2.
(b), (c) and (d ) Evolution of the depth of the current for increasing capillary pressures

ĥc = 0.5, 0.7 and 0.9 in the case in which Γ =1. Each solid line corresponds to successive
times t̂ = 2, 5, 8 and 12.
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Figure 6. Variation of the extent of the near source draining zone for Γ = 0.1, 1.0 and 10.0.

part of the current adjacent to the source where ĥ > ĥc. The flow gradually establishes
a steady shape in the near source zone, across which it drains the fraction 1− ĥc of the
original flux. The remaining flux then advances along the slope without draining, and
an intermediate zone of constant depth ĥc becomes established and grows between
the near source draining zone and the nose of the current. The distal part of the
current, h < hc, then coincides with the model of Huppert & Woods (1995) for steady
flow along an inclined boundary. For comparison, the dotted lines correspond to the
equivalent calculations in the case in which the capillary entry pressure is zero, and
the dashed line is the steady shape in the case of zero capillary pressure.

In figure 5(b–d ) we illustrate the evolution of the current for increasing capillary
pressures. In each of these calculations, the capillary depth, ĥc, is smaller than unity,
and so some of the input flux drains through the boundary in order that the remaining
flux can run along the boundary, with constant depth ĥc. If the steady-state draining
solutions calculated in figure 2 with no capillary pressure predict that the depth at the
source is smaller than or similar to ĥc (e.g. the case in figure 5d with ĥc =0.9), then
the current needs to deepen at the source relative to these steady draining solutions;
this is so that some of the fluid can drain away near the source, and the remaining
flux then adjusts to a current of constant depth ĥ = ĥc which runs downstream.
However, if at the origin the depth of the equivalent steadily draining current with
no capillary pressure (as shown in figure 2) is much larger than the capillary depth ĥc

(figure 5a with ĥc =0.2 and figure 5b with ĥc = 0.5), then at the origin the current has
a depth similar to that steadily draining, zero capillary pressure flow. However, as the
flux decreases through draining, the current adjusts to become a steadily advancing,
non-draining current of constant depth ĥc.

It can be seen that lateral extent of the draining zone diminishes as ĥc increases,
essentially since progressively less of the fluid needs to drain prior to adjustment to
the downstream steady flow. Also, since the steady current is deeper, with larger ĥc

there is more draining per unit length of current while ĥ > ĥc.
In the limit of small Γ , the lateral extent of the draining zone, corresponding to the

point nearest the source at which ĥ = ĥc, x̂ = x̂c, say, is given by (3.10) by the relation

x̂c ∼ −ln(ĥc). (3.11)

The along-slope flux in the continuing, non-draining current is then a fraction ĥc of
the source flux. Figure 6 shows the extent of the near source draining zone, x̂c, as a
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function of ĥc, for Γ =0.1, 1 and 10. It is seen that the lateral extent of the draining
zone decreases rapidly as the capillary pressure increases, as described above (see
figure 5b). The lateral extent of the draining zone also increases as Γ increases, for
a fixed value of ĥc, since with increase in Γ the current becomes shallower at the
source and therefore is required to travel further in order to drain the component of
the flux 1 − ĥc. There is no draining if ĥc > 1, and the entire flow migrates along the
boundary.

4. Fixed volume release
The second useful class of solutions for this two-dimensional problem concern the

dispersal of an instantaneous finite volume release, which then spreads upslope and
may partially drain through the boundary. In a simplified sense, one can interpret
this problem as corresponding to the long-time slumping and draining of the current
following a relatively rapid phase of injection of a finite volume. In the case of a
finite release in which the current becomes thinner with time as it moves upslope, the
rear part of the current involves a receding front. This may lead to a fraction of the
injected fluid being retained within the pore spaces by capillary forces as the front
recedes (Bear 1970; Barenblatt 1996; Bear & Ryzhik 1998; Hesse et al. 2006). In
the present analysis, we explore the limit in which any capillary retention within the
high-permeability layer is small, so that during the evolution of the flow considered
herein, the dominant balance is between the along-slope spreading of the current and
the cross-slope draining through the seal.

In this case, there are in fact some analytical solutions in the limit of zero capillary
entry pressure, with draining, and the limit of finite capillary entry pressure, with
no draining. If the current is initially localized and deep, h � hc, then the initial
dynamics may be represented to good approximation, by the former solutions, while
the long-time limit, after the flow has slumped, corresponds to the latter solutions.
These solutions are self-similar in character (cf. Huppert & Woods 1995), and so it
is convenient to use the square root of the initial area of the current A1/2 as the scale
for both the depth h and the lateral extent x of the current, while the time scale τ

may be taken to be

τ =
A1/2φ

u
=

A1/2φμ

�ρgk cos θ
. (4.1)

Given these scalings for the depth and the lateral extent of the current, for clarity,
we initially focus on currents of aspect ratio 1 and explore the interplay between the
draining and the along-slope spreading. However, later in the section we relax this
restriction and examine the control of the initial aspect ratio of the current on the
evolving motion.

Using the above scaling, the dimensionless governing equation takes the form

∂ĥ

∂t̂
=

∂

∂x̂

(
ĥ

∂ĥ

∂x̂
− ĥ tan θ

)
− Ωĥ, (4.2)

where Ω is given by

Ω =
kuA

1/2

kb
(4.3)

and represents a balance between the cross-slope draining and the along-slope
slumping of the current, while the dimensionless along-slope speed of the current
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θ = 10◦, at times t̂ = 0.10, 0.33, 1.00, 2.70, 20.00, 42.50. The envelope (− − −) of the
analytical solution is also shown.

owing to the along-slope component of gravity is now tan θ . The dimensionless initial
area Â is now given by Â= 1.

For a fixed initial volume of fluid, in the absence of a capillary entry pressure, (4.2)
has the solution

ĥ(x̂, t̂) =
1

4
61/3 exp(−Ωt̂)Ω1/3

(1 − exp(−Ωt̂))1/3

(
1 − 4

64/3

(x̂ − t̂ tan θ)2Ω2/3

(1 − exp(−Ωt̂))2/3

)
(4.4)

for − 62/3 (1 − exp(−Ωt̂))1/3

2Ω1/3
+ t̂ tan θ < x̂ < 62/3 (1 − exp(−Ωt̂))1/3

2Ω1/3
+ t̂ tan θ.

This solution accounts for the steady draining through the boundary (cf. Pritchard
et al. 2001) and the migration of the plume up the slope (cf. Huppert & Woods 1995).
This solution illustrates how the current spreads and drains as it migrates upslope
(denoted by crosses in figure 7); the dashed line in figure 7 illustrates the region
through which the current migrates as it spreads upslope and drains through the
boundary. We compare this analytic solution with a full numerical solution of (4.3) in
figure 7 (solid line). In the numerical solution, the current starts as an initially square
mound of fluid near the source

ĥ = 1 for − 0.5 < x̂ < 0.5.

It is seen that the numerical solution is very accurately described by the analytic
solution after a time of the order of t̂ ∼ 1, when the fluid has spread out along the
layer a distance comparable to its initial length (cf. Pritchard et al. 2001).

The analytical solution indicates that after time t̂ the current has travelled upslope
a distance of the order of x̂ ∼ t̂ tan θ while spreading out along-slope relative to its
centre a distance which scales as (1 − exp(−Ωt̂))1/3.

The variation of the region of the rock through which the current passes depends
on the balance of the cross-slope draining and along-slope spreading, Ω; this is
presented in figure 8. This envelope is of interest in terms of understanding the
possible location of fluid–fluid and fluid–rock reactions involving the injected fluid
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Figure 8. Variation of the envelope of the analytical solution (4.4) with (a) the drainage
parameter Ω =0 (− − −), 0.001, 0.010, 0.100 and 1.000, with θ = 10◦ in all calculations and
(b) θ = 0◦, 10◦, 20◦ and 30◦ for Ω = 0.1.

(cf. Hesse et al. 2006). For smaller drainage rates Ω , the draining per unit distance
travelled along-slope is smaller, and so the region through which the injected fluid
passes is of greater volume and depth, with the limiting case corresponding to no
draining, Ω = 0 (figure 8a). For larger angles of slope, θ , the along-slope flow rate
increases, and so there is less draining per unit distance along the slope, and again
the envelope deepens (figure 8b).

4.1. Capillary entry pressure

The above solutions apply in the case of zero capillary pressure. However, with finite
capillary pressure, only those parts of the current that are deeper than the capillary
depth hc are able to drain. Initially, the nose and the tail of the current are too thin to
drain, but as the current drains, spreads and thins, progressively more of the current
becomes thinner than the capillary entry depth and is no longer able to drain into
the seal layer. Instead the fluid migrates up the boundary, spreading out under the
cross-slope component of gravity as it advances along the boundary. In the limit that
the whole current is too shallow to drain, the current migrates along the boundary
and will asymptote towards the analytical solution

ĥ(x̂, t̂) =
1

4
61/3 A∗2/3

t̂1/3

(
1 − 4

64/3

(x̂ − t̂ tan θ)2

(A∗ t̂)2/3

)
(4.5)

for − 62/3

2
(A∗ t̂)1/3 + t̂ tan θ < x̂ <

62/3

2
(A∗ t̂)1/3 + t̂ tan θ,
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Figure 9. Comparison of numerical ( ) and analytical drain (× × ×) and non-drain

(+ + +) solutions for Ω = 0.01, θ = 10◦, at times t̂ = 1.0, 2.7, 20.0, 42.5, 92.0, for ĥc =0.2.

where A∗ represents the fraction of the initial of the plume which does not drain.
This solution essentially leads to a slow spreading along the slope, over a distance
which increases as (A∗ t̂)(1/3), as the current advances upslope with constant speed
tan θ . The value of A∗ can be calculated from numerical simulations of the motion
of the draining current, using the long-time, steady-state cross-sectional area of the
plume.

The transition from the deep, draining current, as given approximately by (4.4),
to the non-draining flow, given by (4.5), can be seen in figure 9. Here, we illustrate
how the numerically calculated shape of the current evolves from the approximate
draining solution ((4.4), shown by the x symbols), when the current is relatively deep,
to the approximate non-draining solution ((4.5), shown by the + symbols), when
the current has thinned out to a depth less than the capillary pressure. In this case
ĥc =0.2 and A∗ =0.821. Both analytical solutions provide a very accurate description
of the flow at times that are early or late when compared to the draining time, at
which the current depth falls below ĥc.

The precise details of the transition depend on the initial aspect ratio of the current,
the drainage parameter Ω and the capillary entry pressure ĥc. In this context, it is
relevant to note that from (4.4) we expect that the value of Ωt̂ at which the current
depth falls to value ĥc will depend on the quantity ĥc/Ω

1/3. Using this observation,
and comparing (4.4) and (4.5), we expect that the final area of the current, once it
has drained and spread out below the capillary entry depth ĥc, will at the leading
order depend on the quantity ĥc/Ω

1/3. To test this scaling, we have run a series of
systematic calculations in which the initial current of fluid is of square cross-section,
and we have varied the value of Ω and ĥc. In figure 10(a) we illustrate the fraction
of the fluid which drains through the seal rock, AD = 1 − A∗, as a function of ĥc,
for various values of the drainage parameter Ω . All the curves appear to collapse to
one line of the form A∗ = A∗(ĥc/Ω

1/3) as discussed above. The figure also identifies
that there is a rapid transition in the fate of the material as the capillary pressure ĥc

approaches 1, the initial depth of the current. Indeed, for ĥc > 1, the draining ceases.
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Figure 10. (a) Variation of the draining fraction of the fluid AD with the capillary pressure

ĥc for Ω =0.001, 0.010, 0.100, 1.000, with the corresponding changeover times shown in (b).

In figure 10(b), we present the variation of the time t̂change at which the maximum

depth of the current just equals ĥc; from (4.4) we expect Ωt̂change to be a function

of ĥc/Ω
1/3. To test this we compare the variation of Ωt̂ as a function of ĥc/Ω

1/3

for several values of ĥc and Ω . As expected, all curves appear to collapse to a single
curve.

4.2. Aspect ratio

The other key control on the evolution of the current is the initial aspect ratio of the
current. For a given volume of fluid, the ratio of along-slope spreading to cross-slope
draining in the early stages of the flow will depend critically on the initial aspect ratio;
this will then impact the adjustment to the self-similar solutions and in particular the
long-time value of A∗, which controls the post-draining evolution of the current.

Indeed, figure 11 shows that as the initial current becomes progressively more
elongated, with aspect ratio AR = Length/Height, for a given cross-sectional area, the
fraction which leaks off becomes progressively smaller and ultimately decreases to
zero. A simple argument identifies that, in the absence of gravitational spreading,
with a rectangular current of initial length A1/2L̂, depth A1/2L̂−1 and aspect ratio
AR = L̂2, the fraction which will drain is given by

FD = L̂(L̂−1 − ĥc) = 1 − (AR)1/2ĥc. (4.6)
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Figure 11. Variation of the draining fraction with the aspect ratio for ĥc = 0.2 and
Ω = 0.01, 0.10, 1.00. The slope angle is θ =10◦.

draining does not occur when

AR �
1

ĥ2
c

. (4.7)

With the effects of gravitational spreading included in the model, as shown above,
the current may spread out and become thinner, so that it drains less than suggested
by the above scaling (4.6). This effect will be increasingly important if the time scale
for draining through the boundary, τD , is longer than the time scale for spreading
along the length of the current, τs . The ratio of these two time scales, for a current
of aspect ratio AR , is given by (4.3), as τD/τs ∼ 1/Ω(AR)1/2. For example figure 11
illustrates a numerical calculation of the fraction of the current which drains as a
function of the aspect ratio AR and the value of Ω for a current with ĥc = 0.2. As
the draining parameter Ω decreases for a given aspect ratio, progressively less of the
fluid is able to drain through the boundary. This implies that the long-term fate of
a current may depend critically on the initial rate of injection, since this controls the
aspect ratio of the current directly after injection has ceased (cf. § 3).

5. Discussion
The model described above provides a framework to describe the migration of CO2

along a low-permeability inclined layer, including the leakage of the CO2 into this
layer. Although the model is highly simplified it provides insights into some of the
critical parameters of the system which control the dispersal of the CO2.

We now explore the implications of these models for a simplified situation involving
CO2 injection into a deep underground repository. In this context, it is likely that
injection rates will lie in the range 10−5–10−6 m3 s−1 m−1, by analogy with oil and
gas fields (cf. Kumar et al. 2005). In a field with permeability 100 mD ( = 10−13 m2),
CO2 viscosity about 0.1 times that of water and the density of CO2 300–400 kg m−3

smaller than water (Holloway 2001), it follows that the length scale (3.1) has value
L ∼ 10–100 m and the time scale is of the order of 0.1–10 years. With a seal rock of
permeability 100–1 000 times smaller than that of the flowing layer and thickness 1–10
m, Γ lies in the approximate range 0.1 <Γ < 1 (§ 3) , so that with a slope of 5–10◦,
the drainage length lies in the range of 100–1 000 m. As the permeability of the seal
decreases this draining zone becomes greater. If the capillary entry pressure suppresses
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Figure 12. Illustration of the cumulative flux of CO2 which drains through the boundary, as
a function of the position along the boundary, for the case of a finite release of CO2 in which
Ω = 0.1 with the capillary pressure being of dimensionless values 0, 0.1, 0.2 and 0.5.

the vertical leakage of the plume, then the residual flux of gas will continue along the
layer, generating a lateral branch of the current. This partitioning of the flow can lead
to a complex flow generating a vertically and laterally dispersed plume, depending
on both the injection rates and the geological structure of the formation. It may be
that this partitioning of the gravity-driven flow by low-permeability ‘seal’ layers leads
to some of the complex dispersal seen in the time lapse seismic at the Sleipner field
(Bickle et al. 2007). Although some of the vertical motion may also be associated with
the presence of faults cutting through the seal, the present model of a small vertical
permeability in the seal layer may also be associated with a pervasively fractured seal
layer, in which the fractures are primarily responsible for the permeability (Pritchard
2007).

Indeed, in figure 12, we present a calculation of the spatial distribution of the
cumulative flux Vx(x) of CO2 which drains through the boundary at different points
along the permeable seal layer, for the case of a finite release of CO2. This prediction
emerges from the model presented in § 4, and curves are given for dimensionless
capillary entry pressures of 0, 0.1, 0.2 and 0.5, with drainage parameter Ω = 0.1. It
is seen that as the capillary pressure increases, the flux of CO2 which leaks into the
overlying layer decreases dramatically compared to the case with no capillary entry
pressure, and it is much more localized around the initial injection point.

The modelling approach can also be extended to account for a mean background
flow of strength U along the boundary by including an associated pressure gradient
in the rock:

dp

dx
= −μw

kw

U, (5.1)

where kw is the effective permeability experienced by the water. This leads to a
pressure

p = po − ρwg cos θ(x tan θ − h) − ρgg cos θ(h − y) − μwU

k
x (5.2)

(cf. (2.1)) in the plume of gas spreading out below the seal, where po is a reference
pressure (cf. § 2). Combining this with Darcy’s law and the equation for the
conservation of mass and introducing the scalings for h, x and t to render the equations
dimensionless for a finite release, as introduced in § 4, results in the dimensionless
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governing equation

∂ĥ

∂t̂
=

∂

∂x̂

[
ĥ

∂ĥ

∂x̂
− ĥ(tan θ + ζ )

]
− Ωĥ, (5.3)

where

ζ =
μwU

φk�ρg sin θ
. (5.4)

This equation is directly analogous to (4.2) but with the new coefficient tan θ+ζ , where
ζ > 0 implies the background flow runs upslope, while ζ < 0 implies the background
flow runs downslope. For typical values of the parameters and a groundwater flow in
the range 10−6–10−7 m s−1 (Phillips 1991), we expect ζ to have value of the order of
0.1–10. This implies that with ζ > 0, the effect of the background flow is equivalent to
the boundary being more steeply inclined. Alternatively, in the case of a background
downslope flow, ζ < 0, the model implies that the pressure gradient associated with
the background flow may dominate the effect of the upslope component of gravity,
assuming the actual slope is relatively shallow, and so the flow may then move
downslope. The solution of the model equation is however directly analogous to the
results presented in this paper, but the effective angle of slope is different.

6. Conclusions
We have developed a model for the dispersal of a plume of buoyant fluid through

a permeable rock bound above by a thin, inclined low-permeability ‘seal’ layer,
accounting for the effects of leakage of the fluid across the seal and also for the
effects of the capillary entry pressure which impede the invasion of the injected fluid
into the seal. The model provides a new framework to develop approximate predictions
for the dispersal distance of a CO2 plume as it runs along a low-permeability ‘seal’
layer. We have shown that a steady current partitions into a component running
along the slope and a component which drains. The partitioning depends critically
on the ratio of the depth of the current required to overcome the capillary pressure
compared to the steady state depth of the current which would run along the slope
in the absence of draining. A finite release also partitions into a fraction which at
early times drains through the overlying low-permeability layer and a fraction which
at long times runs and spreads out along the slope; the controls on this partitioning
now also depend on the initial aspect ratio of the current.

It would be of interest to combine these models with some models of the variability
in the subsurface geology, in order to determine some probabilistic estimates of the
dispersal of CO2 plumes, and we are presently developing a framework for this. These
models also enable setting up of some benchmark for the development of detailed
numerical models, in that the length scale L for the depth of the plume leads to
constraints on the vertical resolution required in a numerical model of the main
flowing layer. The dimensional time scales identified in §§ 3 and 4 also provide a
constraint on any numerical scheme, in that they identify the time scale over which
the current advances a distance comparable to its depth. Furthermore, the rate of
draining into the low-permeability layer provides constraints on the vertical resolution
required to resolve the dynamics of the advancing front in that layer.

In developing progressively more realistic models, there are numerous features which
could form useful extensions to this work, including the modelling of dissolution
of a fraction of the CO2 into the groundwater and associated convective flows
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(Riaz et al. 2006), capillary trapping of a fraction of the CO2 in the pore spaces
(Hesse et al. 2006; Farcas & Woods 2009) and the effects of non-constant effective
permeability associated with the motion of the different fluid phases (Bear 1970). It
will also be of interest to include the possibility of more complex geometry of the
strata in which there may be downward as well as upward motion of the injected fluid.
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